Spring 2017 MATH5012

Real Analysis II

Solution to Exercise 5

Standard notations are in force. * are for math-majors only. * are optional.
(1) Let $f \in L^{1}\left(\mathbb{R}^{1}\right)$ and $g \in L^{p}(\mathbb{R}), p \in[1, \infty]$.
(a) Show that Young's inequality also holds for $p=\infty$.
(b) Show that equality can hold in Young's inequality when $p=1$ and ∞, and find the conditions under which this happens.
(c) For $p \in(1, \infty)$, show that equality in the inequality holds only when either f or g is zero almost everywhere.
(d) For $p \in[1, \infty]$, show that for each $\varepsilon>0$, there exist $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R})$ such that

$$
\|f * g\|_{p}>(1-\varepsilon)\|f\|_{1}\|g\|_{p}
$$

Solution.

(a) It is obvious that fixing $x, f(x-y) g(y)$ is integrable w.r.t. y and

$$
\begin{aligned}
\left|\int f(x-y) g(y) d y\right| & =\int|f(x-y) g(y)| d y \\
& \leq \int|f(x-y)| d y\|g\|_{\infty}=\|f\|_{1}\|g\|_{\infty}<\infty, \forall x \in \mathbb{R}
\end{aligned}
$$

Hence $\|f * g\|_{\infty} \leq\|f\|_{1}\|g\|_{\infty}$
(b) For instance if g is constant function equals to 1 and f is nonnegative, then $\forall x \in \mathbb{R}$

$$
\left|\int f(x-y) g(y) d y\right|=\left|\int f(x-y) d y\right|=\|f\|_{1} .
$$

we see that $\|f * g\|_{\infty}=\|f\|_{1}$ and the Young's inequality holds for $p=\infty$. For $p=1$, if $f=g \geq 0$, then

$$
\begin{aligned}
\|f * f\|_{1} & =\int\left|\int f(y) f(x-y) d y\right| d x=\iint f(y) f(x-y) d y d x \\
& =\iint f(y) f(x-y) d x d y \\
& =\|f\|_{1} \int f(y) d y=\|f\|_{1}^{2}
\end{aligned}
$$

(c) Suppose on the contrary, g and $f \neq 0$ a.e.. Since $0<\|f * g\|_{p}=$ $\|f\|_{1}\|g\|_{p}<\infty$, the map

$$
\Lambda(h):=\int h(x) F(x) d x
$$

where $F(x)=f * g(x)$, is a well defined bounded linear map on \mathcal{L}^{q}. Moreover, substitute $h=\operatorname{sgn}(F(x))|F(x)|^{\frac{p}{q}}$

$$
\begin{aligned}
\|f * g\|_{p}^{p}=\Lambda(h) & =\int h(x) F(x) d x=\iint h(x) f(y) g(x-y) d y d x \\
& =\iint h(x) f(y) g(x-y) d x d y \\
& \leq \int|f(y)| \int|h(x) \| g(x-y)| d x d y \\
& \leq \int|f(y)|\|h\|_{q}\|g\|_{p} d y \\
& =\|f\|_{1}\|g\|_{p}\|f * g\|_{p}^{\frac{p}{q}} \\
& =\|f * g\|_{p}^{\frac{p}{q}+1}=\|f * g\|_{p}^{p}
\end{aligned}
$$

Hence all the inequality hold. There is measurable A with $\mathcal{L}(A)>0$ such that $\forall y \in A, \int\left|h(x)\|g(x-y) \mid d x=\| h\left\|_{q}\right\| g \|_{p}\right.$. By the condition for Holder equality to hold (for example P.64-65 of Rudin's Real and

Complex Analysis), we see that there are $y_{i} \in A, i=0,1$ with $y_{1}>y_{0}$

$$
\frac{|F(x)|^{p}}{\|F\|_{p}^{p}}=\frac{\left|g\left(x-y_{i}\right)\right|^{p}}{\|g\|_{p}^{p}}, \forall x \in \mathbb{R} \backslash N_{y_{i}}
$$

where $N_{y_{i}}$ are some measure zero sets. We see that

$$
\left|g\left(x-y_{1}\right)\right|=\left|g\left(x-y_{0}\right)\right|, \forall x \in \mathbb{R} \backslash\left(N_{y_{0}} \cup N_{y_{1}}\right)
$$

Let $T:=y_{1}-y_{0}>0$, we have

$$
|g(s+T)|^{p}=|g(s)|^{p}, \text { a.e. } s \in \mathbb{R}
$$

, which is absurd since $g \in \mathcal{L}^{p}$. Therefore f or $g=0$ a.e..
(d) The case for $p=\infty$ follows from the example in b) which gives equality and nontrivial $f * g$. For $p \geq 1, \forall \varepsilon>0$, let $f(x)=e^{-x} \chi_{[0, \infty)}(x)$, $g(x)=\chi_{[0 . k)}(x)$, where k is to be chosen, then $\|f\|_{1}=1$ and $\|g\|_{p}=k^{\frac{1}{p}}$. It suffices to show that for sufficiently large k,

$$
\int\left(\int f(y) g(x-y) d y\right)^{p} d x \geq(1-\varepsilon)^{p} k
$$

In fact LHS,

$$
\begin{aligned}
\int\left(\int f(y) g(x-y) d y\right)^{p} d x & =\int_{x<0}+\int_{0 \leq x \leq k}+\int_{k \leq x}\left(\int f(y) g(x-y) d y\right)^{p} d x \\
& =: I+I I+I I I .
\end{aligned}
$$

It is immediate that $I=0$. Moreover $I I I$ is nonegative, we may estimate $I I$. Since for $x \geq 0,-e^{-x} \geq-1$

$$
I I=\int_{0}^{k}\left(\int_{0}^{x} f(y) d y\right)^{p} d x=\int_{0}^{k}\left(1-e^{-x}\right)^{p} d x \geq \int_{0}^{k}\left(1-p e^{-x}\right) d x \geq k-p
$$

where we have used the Bernoulli's inequality. Hence

$$
L H S \geq I I \geq k-p \geq(1-\varepsilon)^{p} k
$$

provided k is large enough.
(2) Show that for integrable f and g in \mathbb{R}^{n},

$$
\int f(x-y) g(y) d y=\int g(x-y) f(y) d y
$$

Solution.

Case 1. $f=\chi_{E}$ and $g=\chi_{F}$ for some measurable sets E and F.

$$
\begin{aligned}
\int f(x-y) g(y) d y & =\int \chi_{E}(x-y) \chi_{F}(y) d y=\int_{x-E} \chi_{F} \\
& =\mathcal{L}(F \cap(x-E))=\mathcal{L}((F-x) \cap(-E)) \\
& =\mathcal{L}((x-F) \cap E)=\int_{x-F} \chi_{E} \\
& =\int \chi_{F}(x-y) \chi_{E}(y) d y=\int g(x-y) f(y) d y .
\end{aligned}
$$

Case 2. f, g are nonnegative measurable functions.
Pick sequences of increasing simple functions s_{n} and t_{n} such that $s_{n} \rightarrow f$ and $t_{n} \rightarrow g$. Then for each x, y, we have $s_{n}(x-y) t_{n}(y) \rightarrow$ $f(x-y) g(y)$. By the Monotone Convergence Theorem,

$$
\int f(x-y) g(y) d y=\int g(x-y) f(y) d y
$$

Case 3. f, g are integrable functions.

$$
\text { Consider } f^{+}, f^{-}, g^{+}, g^{-} \text {separately. }
$$

(3) A family $\left\{Q_{\varepsilon}\right\}, \varepsilon \in(0,1)$ or a sequence $\left\{Q_{n}\right\}_{n \geq 1}$ is called an "approximation
to identity" if (a) $Q_{\varepsilon}, Q_{n} \geq 0$, (b) $\int Q_{\varepsilon}, \int Q_{n}=1$, and (c) $\forall \delta>0$,

$$
\begin{aligned}
& \int_{|x| \geq \delta}\left|Q_{\varepsilon}\right|(x) d x \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \text { or } \\
& \int_{|x| \geq \delta}\left|Q_{n}\right|(x) d x \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Verify that
(i) $P_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}, x \in \mathbb{R} ; y \rightarrow 0$
(ii) $H_{t}(x)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{4 t}}, x \in \mathbb{R}^{n}, t \rightarrow 0$,
(iii) $\frac{1}{2 \pi} F_{k}(x)=\left\{\begin{array}{ll}\frac{1}{2 \pi n} \frac{\sin ^{2} \frac{k x}{2}}{\sin ^{2} \frac{x}{2}}, & |x| \leq \pi, \\ 0, & |x|>\pi,\end{array}, x \in \mathbb{R}, k \rightarrow \infty\right.$ are approximations to identity.

Solution.

(i) A change of variable and the fact $\int \frac{1}{1+x^{2}} d x=\pi$ shows that

$$
\pi \int P_{y}(x) d x=\int \frac{y}{x^{2}+y^{2}} d x=\pi
$$

A simple calculation shows that for every $\delta>0$,

$$
\begin{aligned}
\int_{|x| \geq \delta} \frac{|y|}{x^{2}+y^{2}} d y & =\pi+\arctan \left(\frac{-\delta}{|y|}\right)-\arctan \left(\frac{\delta}{|y|}\right) \\
& \rightarrow \pi+\frac{-\pi}{2}-\frac{\pi}{2}=0
\end{aligned}
$$

(ii) $\int H_{t}=1$ follows from that $\int e^{-x^{2}} d x=1$ and n iterations using Fubini's Theorem. Now for any $\delta>0$, we claim that there exists an $1>\varepsilon>0$ such that whenever $0<t<\varepsilon, H_{t} \leq H_{1}$ on the set $A=\left\{x \in \mathbb{R}^{n}:|x| \geq\right.$ $\delta\}$.

We choose an $\varepsilon \in(0,1)$ such that

$$
0<\frac{-2 n t \log t}{1-t} \leq \delta^{2} \leq|x|^{2}
$$

whenever $0<t<\varepsilon$. We can calculate that for these t,

$$
H_{t}(x) \leq H_{1}(x)
$$

on A. Also, $H_{t} \rightarrow 0$ as $t \rightarrow 0$. By the Lebesgue Dominated Convergence Theorem, since $H_{1} \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\lim _{t \rightarrow 0} \int_{A} H_{t}=\int_{A} \lim _{t \rightarrow 0} H_{t}=0
$$

(iii) We first observe that the Fejer kernel, on $[-\pi, \pi]$,

$$
F_{k}(x)=\frac{1}{k} \sum_{j=0}^{k-1} D_{j}(x)=\sum_{j=-k+1}^{k-1}\left(1-\frac{|j|}{k}\right) e^{i j x}
$$

where $D_{k}(x)=\sum_{j=-k}^{k} e^{i j x}$. So $\int F_{k}=1$. Fix $\delta>0$. Then there exists a constant $c_{\delta}>0$ such that for $|x| \geq \delta, \sin ^{2} \frac{x}{2} \geq c_{\delta}$ and thus $\left|F_{k}(x)\right| \leq \frac{1}{n c_{\delta}}$. It follows that $\int_{|x| \geq \delta} F_{k}=0$.
(4) Let f be a continuous function in \mathbb{R}^{n}. Then $f * Q_{\varepsilon} \rightarrow f$ for any approximation to identity Q_{ε}.

Solution: Fix $x_{0} \in \mathbb{R}^{n}$. Given any $\eta>0$, there exists $\delta>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\eta
$$

whenever $|x|<\delta$. Now

$$
\begin{aligned}
& \left|f * Q_{\varepsilon}\left(x_{0}\right)-f\left(x_{0}\right)\right| \\
= & \left|\int\left(f\left(x_{0}-y\right)-f\left(x_{0}\right)\right) Q_{\varepsilon}(y) d y\right| \\
\leq & \left|\int_{|y|<\delta}\left(f\left(x_{0}-y\right)-f\left(x_{0}\right)\right) Q_{\varepsilon}(y) d y\right|+\left|\int_{|y| \geq \delta}\left(f\left(x_{0}-y\right)-f\left(x_{0}\right)\right) Q_{\varepsilon}(y) d y\right| \\
\leq & \varepsilon \int_{|y|<\delta}\left|Q_{\varepsilon}(y)\right| d y+2 M \int_{|y| \geq \delta}\left|Q_{\varepsilon}(y)\right| d y
\end{aligned}
$$

where we take $M>0$ such that $|f| \leq M$ (in order to have the integral $f * Q_{\varepsilon}$ defined, we need f to be integrable hence such M exists). It follows that

$$
\varlimsup \overline{\lim }\left|f * Q_{\varepsilon}\left(x_{0}\right)-f\left(x_{0}\right)\right| \leq \varepsilon
$$

because $\int_{|y| \geq \delta} Q_{\varepsilon}(y) d y \rightarrow 0$ implies $\int_{|y|<\delta} Q_{\varepsilon}(y) d y \rightarrow 1$.
(5) Improve (3) to: Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and x a Lebesgue point of f. Then $f *$ $Q_{\varepsilon}(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0$.
Solution. We focus on the special case where Q_{ε} is the standard mollifier

$$
Q_{\varepsilon}(x)=\eta_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} \eta\left(\frac{x}{\varepsilon}\right),
$$

and

$$
\eta(x)= \begin{cases}c \exp \left(\frac{1}{|x|^{2}-1}\right), & \text { if }|x|<1 \\ 0, & \text { if }|x| \geq 1\end{cases}
$$

with

$$
\int_{\mathbb{R}^{n}} \eta(x) d x=1 .
$$

Now,

$$
\begin{aligned}
\left|f * \eta_{\varepsilon}(x)-f(x)\right| & \leq \frac{1}{\varepsilon^{n}} \int_{B_{\varepsilon}(x)} \eta\left(\frac{x-y}{\varepsilon}\right)|f(y)-f(x)| d y \\
& \leq\left|B_{1}\right|\|\eta\|_{L^{\infty}} \frac{1}{\left|B_{\varepsilon}\right|} \int_{B_{\varepsilon}(x)}|f-f(y)| d y \\
& \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 .
\end{aligned}
$$

